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The node and node connections are perfect tools for making trees, but positioning the nodes using
\rput would be rather tedious.1 The file pst-tree.tex/pstree.sty contains a high-level interface for
making trees.
It should be noted that the correct result is not guaranteed with every dvips driver. This package

was written for Rokicki’s dvips programme, which is practically part of every TEX distribution.

Thanks to: Andreas Nolda

1 Unless you have a computer program that generates the coordinates.
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1 Overview

The tree commands are
\pstree{<root>}{<successors>}

TEX version LATEX version
\psTree{<root>} \begin{psTree}{root}

<successors> <successors>
\endpsTree \end{psTree}

These do the same thing, but just have different syntax. \psTree is the “long” version. These macros make a box
that encloses all the nodes, and whose baseline passes through the center of the root. Most of the nodes has a
variant for use within a tree and are called tree nodes (see Section 2).
Trees and tree nodes are called tree objects. The root of a tree should be a single tree object, and the successors

should be one or more tree objects. Here is an example with only nodes:

root

\pstree[radius=3pt]{\Toval{root}}{\TC* \TC* \TC* \TC*}

There is no difference between a terminal node and a root node, other than their position in the \pstree{}

command.
Here is an example where a tree is included in the list of successors, and hence becomes subtree:

\pstree[radius=3pt]{\Tp}{%

\TC*

\pstree{\TC}{\TC* \TC*}

\TC*}

2 Tree Nodes

In each case, the name of the tree node is formed by omitting ”‘node”’ from the end of the name and adding ”T”
at the beginning. For example, \psovalnode becomes \Toval. Here is the list of such tree nodes:



2 Tree Nodes 5

\Tp * [Options]

\Tc * [Options] {dim}

\TC * [Options]

\Tf * [Options]

\Tdot * [Options]

\Tr * [Options] {stuff }

\TR * [Options] {stuff }

\Tcircle * [Options] {stuff }

\TCircle * [Options] {stuff }

\Toval * [Options] {stuff }

\Tdia * [Options] {stuff }

\Ttri * [Options] {stuff }

The syntax of a tree node is the same as of its corresponding “normal” node, except that:

• There is always an optional argument for setting graphics parameters, even if the original node did not
have one;

• There is no argument for specifying the name of the node;

• There is never a coordinate argument for positioning the node; and

• To set the reference point with \Tr, set the ref parameter.

Figure 1 gives a reminder of what the nodes look like.
The difference between \Tr and \TR (variants of \rnode and \Rnode, respectively) is important with trees.

Usually, you want to use \TR with vertical trees because the baselines of the text in the nodes line up horizontally.
For example:

𝑋

̃�̃� 𝑥 𝑦

$

\pstree[nodesepB=3pt]{\Tcircle{X}}{%

\TR{\tilde{\tilde{X}}}

\TR{x}

\TR{y}}

$

Compare with this example, which uses \Tr:

𝑋

̃�̃� 𝑥 𝑦

$

\pstree[nodesepB=3pt]{\Tcircle{X}}{%

\Tr{\tilde{\tilde{X}}}

\Tr{x}

\Tr{y}}

$

There is also a null tree node:
\Tn

It is meant to be just a place holder. Look at the tree in Figure page 6. The bottom row has a node missing in the
middle. \Tn{} was used for this missing node.
There is also a special tree node that doesn’t have a “normal” version and that can’t be used as the root node

of a whole tree:
\Tfan * [Options]

This draws a triangle whose base is fansize and whose opposite corner is the predecessor node, adjusted by the
value of nodesepA and offsetA. For example:
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Tree nodes

\Tp

\Tc
\TC

\Tcircle b

\Tdot

\TCircle \Toval \Ttri \Tdia

\Tf

\Tr \TR

\small

\psset{armB=1cm, levelsep=3cm, treesep=-3mm, angleB=-90, angleA=90, nodesepA=3pt}

\def\s#1{#1~{\ttfamily\string#1}}\def\b#1{#1{\ttfamily\string#1}}\def\psedge#1#2{\ncangle{#2}{#1}}

\psTree[treenodesize=1cm]{\Toval{Tree nodes}}

\s\Tp\Tc{.5}~{\ttfamily\string\Tc} \s\TC

\psTree[levelsep=4cm,armB=2cm]{\Tp[edge=\ncline]}

\b\Tcircle \s\Tdot

\TCircle[radius=1.2]{\ttfamily\string\TCircle}

\Tn \b\Toval \b\Ttri \b\Tdia

\endpsTree

\s\Tf \b\Tr \b\TR

\endpsTree

Figure 1: The tree nodes.

11

m

m

m

\pstree[dotstyle=oplus,dotsize=8pt,nodesep=2pt]{\Tcircle

{11}}{%

\Tdot

\pstree{\Tfan}{\Tdot}

\pstree{\Tdot}{\Tfan[linestyle=dashed]}}

3 Tree orientation

Trees can grow down, up, right or left, depending on the treemode= D, U, R, or L parameter.
Here is what the previous example looks like when it grows to the right:
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11

m

m

m

\pstree[dotstyle=oplus,dotsize=8pt,

nodesep=2pt,treemode=R]

{\Tcircle{11}}{%

\Tdot

\pstree{\Tfan}{\Tdot}

\pstree{\Tdot}{\Tfan[linestyle=dashed]}}

You can change the treemode in the middle of the tree. For example, here is a tree that grows up, and that has
a subtree which grows to the left:

b

n

1

2

n

3 4

\footnotesize

\pstree[treemode=U,dotstyle=otimes,dotsize=8pt,nodesep=2pt]

{\Tdot}{%

\pstree[treemode=L]{\Tdot}{\Tcircle{1} \Tcircle{2}}

\pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Since you can change a tree’s orientation, it can make sense to include a tree (<treeB>) as a root node (of
<treeA>). This makes a single logical tree, whose root is the root of <treeB>, and that has successors going off
in different directions, depending on whether they appear as a successor to <treeA> or to <treeB>.

rootB

A1 A2

\pstree{\pstree[treemode=L]{\Tcircle{root}}{\Tr{B}}}{%

\Tr{A1}

\Tr{A2}}

On a semi-related theme, note that any node that creates an LR-box can contain a tree. However, nested trees
of this kind are not related in any way to the rest of the tree. Here is an example:

b

a b

\psTree{\Tcircle{%

\pstree[treesep=0.4,levelsep=0.6,

nodesepB=-6pt]{\Tdot}{%

\TR{a} \TR{b}}}}

\TC

\TC

\endpsTree

When the tree grows up or down, the successors are lined up from left to right in the order they appear
in \pstree. When the tree grows to the left or right, the successors are lined up from top to bottom. As an
afterthought, you might want to flip the order of the nodes. The keyword treeflip=true/falselet’s you do this.
For example:

b

n

1

2

n

34

\footnotesize

\pstree[treemode=U,dotstyle=otimes,dotsize=8pt,

nodesep=2pt,treeflip=true]{\Tdot}{%

\pstree[treemode=R]{\Tdot}{\Tcircle{1} \Tcircle{2}}

\pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Note that I still have to go back and change the treemode of the subtree that used to grow to the left.
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4 The distance between successors

The distance between successors is set by the key treesep. The rest of this section describes ways to fine-tune
the spacing between successors. You can change the method for calculating the distance between subtrees by
setting the treefit=tight/loose parameter. Here are the two methods:

tight When treefit=tight , which is the default, treesep is the minimum distance between each of the levels of
the subtrees.

loose When treefit=loose , treesep is the distance between the subtrees’ bounding boxes. Except when you
have large intermediate nodes, the effect is that the horizontal distance (or vertical distance, for horizontal
trees) between all the terminal nodes is the same (even when they are on different levels).2

Compare:

With treefit=loose , trees take up more space, but sometimes the structure of the tree is emphasized.
Sometimes you want the spacing between the centers of the nodes to be regular even though the nodes have

different sizes. If you set treenodesize to a non-negative value, then PSTricks sets the width (or height+depth for
vertical trees) to treenodesize, for the purpose of calculating the distance between successors.
For example, ternary trees look nice when they are symmetric, as in the following example:

𝑥 = 𝑦 𝑥1 = 𝑦1 𝑥11 = 𝑦11

\pstree[nodesepB=-8pt,treenodesize=.85]{\Tc{3pt}}{%

\TR{$x=y$}

\TR{$x_1=y_1$}

\TR{$x_{11}=y_{11}$}}%$

Compare with this example, where the spacing varies with the size of the nodes:

𝑥 = 𝑦 𝑥1 = 𝑦1 𝑥11 = 𝑦11

\pstree[nodesepB=-8pt]{\Tc{3pt}}{%

\TR{$x=y$}

\TR{$x_1=y_1$}

\TR{$x_{11}=y_{11}$}}%$

Finally, if all else fails, you can adjust the distance between two successors by inserting \tspace{length}
between them:

2 When all the terminal nodes are on the same level, and the intermediate nodes are not wider than the base of their corresponding
subtrees, then there is no difference between the two methods.
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foo and bar

\pstree{\Tc{3pt}}{%

\Tdia{foo}

\tspace{-0.5}

\Toval{and}

\Ttri{bar}}

5 Spacing between the root and successors

The distance between the center lines of the tree levels is levelsep. If you want the spacing between levels to
vary with the size of the levels, use the * convention. Then levelsep is the distance between the bottom of one
level and the top of the next level (or between the sides of the two levels, for horizontal trees).
Note: PSTricks has to write some information to your .aux file if using LATEX, or to \jobname.pst otherwise, in

order to calculate the spacing. You have to run your input file a few times before PSTricks gets the spacing right.
trees. Compare the following example:

George Alexander Kopf VII

Barry Santos
James Kyle

Ann Ada

Terri Maloney
Uwe Kopf

Vera Kan

\def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}

\pstree[treemode=R,levelsep=*1cm]{\Tr{George Alexander Kopf VII}}{%

\pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}

\pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

with this one, were the spacing between levels is fixed:

George Alexander Kopf VII

Barry Santos
James Kyle

Ann Ada

Terri Maloney
Uwe Kopf

Vera Kan

\def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}

\pstree[treemode=R,levelsep=3cm]{\Tr{George Alexander Kopf VII}}{%

\pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}

\pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

6 Edges

Right after you use a tree node command, \pssucc is equal to the name of the node, and \pspred is equal to
the name of the node’s predecessor. Therefore, you can draw a line between the node and its predecessor by
inserting, for example,

\ncline{\pspred}{\pssucc}

To save you the trouble of doing this for every node, each tree node executes

\psedge{\pspred}{\pssucc}
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The default definition of \psedge is \ncline, but you can redefine it as you pleasewith \def or LATEX’s \renewcommand.
For example, here I use \ncdiag, with armA=0, to get all the node connections to emanate from the same point

in the predecessor. LATEX users can instead type:

\renewcommand{\psedge}{\ncdiag[armA=0,angleB=180,armB=1cm]}

K

L

M

N

\def\psedge{\ncdiag[armA=0,angleB=180,armB=1cm]}

\pstree[treemode=R,levelsep=3.5cm,framesep=2pt]{\Tc{6pt}}{%

\small \Tcircle{K} \Tcircle{L} \Tcircle{M} \Tcircle{N}}

Here is an example with \ncdiagg. Note the use of a negative armA value so that the corners of the edges are
vertically aligned, even though the nodes have different sizes:

𝑧1 ≤ 𝑦

𝑧1 < 𝑦 ≤ 𝑧2

𝑧2 < 𝑦 ≤ 𝑥

𝑥 < 𝑦

$

\def\psedge#1#2{\ncdiagg[angleA=180,armA=1cm,nodesep=4pt]{#2}{#1}}

% Or: \renewcommand{\psedge}[2]{ ... }

\pstree[treemode=R, levelsep=5cm]{\Tc{3pt}}{%

\Tr{z_1\leq y} \Tr{z_1<y\leq z_2} \Tr{z_2<y\leq x} \Tr{x<y}

}

$

Another way to define \psedge{} is with the edge parameter. Be sure to enclose the value in braces ”” if it
contains commas or other parameter delimiters. This gets messy if your command is long, and you can’t use
arguments like in the preceding example, but for simple changes it is useful. For example, if I want to switch
between a few node connections frequently, I might define a command for each node connection, and then use
the edge parameter.

\def\dedge{\ncline[linestyle=dashed]}

\pstree[treemode=U,radius=2pt]{\Tc{3pt}}{%

\TC*[edge=\dedge]

\pstree{\Tc{3pt}}{\TC*[edge=\dedge] \TC*}

\TC*}

You can also set edge=none to suppress the node connection.
If you want to draw a node connection between two nodes that are not direct predecessor and successor, you

have to give the nodes a name that you can refer to, using the name parameter. For example, here I connect two
nodes on the same level:
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nature

\pstree[nodesep=3pt,radius=2pt]{\Toval{nature}}{%

\pstree{\Tc[name=top]{3pt}}{\TC* \TC*}

\pstree{\Tc[name=bot]{3pt}}{\TC* \TC*}}

\ncline[linestyle=dashed]{top}{bot}

We conclude with the more examples.

root

X

Y

Z

\def\psedge{\nccurve[angleB=180, nodesepB=3pt]}

\pstree[treemode=R, treesep=1.5, levelsep=3.5]%

{\Toval{root}}{\Tr{X} \Tr{Y} \Tr{Z}}

root

𝑥 𝑦 𝑧

\pstree[nodesepB=3pt, arrows=->, xbbl=15pt,

xbbr=15pt, levelsep=2.5cm]{\Tdia{root}}{%

$

\TR[edge={\ncbar[angle=180]}]{x}

\TR{y}

\TR[edge=\ncbar]{z}

$}

root
\psset{armB=1cm, levelsep=3cm, treesep=1cm,

angleB=-90, angleA=90, arrows=<-, nodesepA=3pt}

\def\psedge#1#2{\ncangle{#2}{#1}}

\pstree[radius=2pt]{\Ttri{root}}{\TC* \TC* \TC* \TC*}

7 Edge and node labels

Right after a node, an edge has typically been drawn, and you can attach labels using \ncput, \tlput, etc. With
\tlput, \trput, \taput, and \tbput, you can align the labels vertically or horizontally, just like the nodes. This can
look nice, at least if the slopes of the node connections are not too different.

k r

j i

m
\pstree[radius=2pt]{\Tp}{%

\psset{tpos=.6}

\TC* \tlput{k}

\pstree{\Tc{3pt} \tlput[labelsep=3pt]{r}}{%

\TC* \tlput{j}

\TC* \trput{i}}

\TC* \trput{m}}
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Within trees, the tpos parameter measures this distance from the predecessor to the successor, whatever the
orientation of the true. (Outside of trees it measures the distance from the top to bottom or left to right nodes.)
PSTricks also sets shortput=tab within trees. This is a special shortput option that should not be used outside

of trees. It implements the following abbreviations, which depend of the orientation of the true:

Short for:
Char. Vert. Horiz.
^ \tlput \taput

_ \trput \tbput

(The scheme is reversed if treeflip=true .)

above

left right

above

below

\psset{tpos=.6}

\pstree[treemode=R, thistreesep=1cm,

thislevelsep=3cm,radius=2pt]{\Tc{3pt}}{%

\pstree[treemode=U, xbbr=20pt]{\Tc{3pt}^{above}}{%

\TC*^{left}

\TC*_{right}}

\TC*^{above}

\TC*_{below}}

You can change the character abbreviations with

\MakeShortTab{<char1>}{<char2>}

The \n*put commands can also give good results:

abov
e

above

below

\psset{npos=.6,nrot=:U}

\pstree[treemode=R, thistreesep=1cm,

thislevelsep=3cm]{\Tc{3pt}}{%

\Tc{3pt}\naput{above}

\Tc*{2pt}\naput{above}

\Tc*{2pt}\nbput{below}}

You can put labels on the nodes using \nput. However, \pstree won’t take these labels into account when
calculating the bounding boxes.

There is a special node label option for trees that does keep track of the bounding boxes:

� * [Options] {stuff }

Call this a “tree node label”.
Put a tree node label right after the node to which it applies, before any node connection labels (but node

connection labels, including the short forms, can follow a tree node label). The label is positioned directly below
the node in vertical trees, and similarly in other trees. For example:

root

ℎ 𝑖 𝑗 𝑘

\pstree[radius=2pt]{\Tc{3pt}\nput{45}{\pssucc}{root}}{%

\TC*~{$h$} \TC*~{$i$} \TC*~{$j$} \TC*~{$k$}}
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Note that there is no “long form” for this tree node label. However, you can change the single character used
to delimit the label with
\MakeShortTnput{<char1>}

If you find it confusing to use a single character, you can also use a command sequence. E.g.,

\MakeShortTnput{\tnput}

You can have multiple labels, but each successive label is positioned relative to the bounding box that includes
the previous labels. Thus, the order in which the labels are placed makes a difference, and not all combinations
will produce satisfactory results.
You will probably find that the tree node label works well for terminal nodes, without your intervention.

However, you can control the tree node labels be setting several parameters.
To position the label on any side of the node (”l”eft, ”r”ight, ”a”bove or ”b”elow), set: tnpos=l/r/a/b

root

ℎ 𝑖

\psframebox{%

\pstree{\Tc{3pt}~[tnpos=a,tndepth=0pt,radius=4pt]{root}}{%

\TC*~[tnpos=l]{$h$}

\TC*~[tnpos=r]{$i$}}}

When you leave the argument empty, which is the default, PSTricks chooses the label position is automatically.
To change the distance between the node and the label, set tnsep to a dimensionWhen you leave the argument

empty, which is the default, PSTricks uses the value of labelsep. When the value is negative, the distance is
measured from the center of the node.
When labels are positioned below a node, the label is given a minimum height of tnheight. Thus, if you add

labels to several nodes that are horizontally aligned, and if either these nodes have the same depth or tnsep is
negative, and if the height of each of the labels is no more than tnheight, then the labels will also be aligned by
their baselines. The default is \ht\strutbox, which in most TEX formats is the height of a typical line of text in
the current font. Note that the value of tnheight is not evaluated until it is used.
The positioning is similar for labels that go below a node. The label is given a minimum depth of tndepth. For

labels positioned above or below, the horizontal reference point of the label, i.e., the point in the label directly
above or below the center of the node, is set by the href parameter.
When labels are positioned on the left or right, the right or left edge of the label is positioned distance tnsep

from the node. The vertical point that is aligned with the center of the node is set by tnyref. When you leave
this empty, vref is used instead. Recall that vref gives the vertical distance from the baseline. Otherwise, the
tnyref parameter works like the yref parameter, giving the fraction of the distance from the bottom to the top
of the label.

8 Details

PSTricks does a pretty good job of positioning the nodes and creating a box whose size is close to the true
bounding box of the tree. However, PSTricks does not take into account the node connections or labels when
calculating the bounding boxes, except the tree node labels.
If, for this or other reasons, you want to fine tune the bounding box of the nodes, you can set the following

parameters to a dimension:
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name default
bbl 0pt
bbr 0pt
bbh 0pt
bbd 0pt
xbbl 0pt
xbbr 0pt
xbbh 0pt
xbbd 0pt
The ”‘x”’ versions increase the bounding box by <dim>, and the others set the bounding box to the dimension.

There is one parameter for each direction from the center of the node, left, right, height, and depth.
These parameters affect trees and nodes, and subtrees that switch directions, but not subtrees that go in the

same direction as their parent tree (such subtrees have a profile rather than a bounding box, and should be
adjusted by changing the bounding boxes of the constituent nodes).
Save any fiddling with the bounding box until you are otherwise finished with the tree.
You can see the bounding boxes by setting the showbbox=true/falseparameter to true. To see the bounding

boxes of all the nodes in a tree, you have to set this parameter before the tree.
In the following example, the labels stick out of the bounding box:

foo

left

bar

right
\psset{tpos=.6,showbbox=true}

\pstree[treemode=U]{\Tc{5pt}}{%

\TR{foo}^{left}

\TR{bar}_{right}}

Here is how we fix it:

foo

left

bar

right
\psset{tpos=.6,showbbox=true}

\pstree[treemode=U,xbbl=8pt,xbbr=14pt]{\Tc{5pt}}{%

\TR{foo}^{left}

\TR{bar}_{right}}

Now we can frame the tree:

foo

left

bar

right

\psframebox[fillstyle=solid,fillcolor=lightgray,framesep=14pt,

linearc=14pt,cornersize=absolute,linewidth=1.5pt]{%

\psset{tpos=.6,border=1pt,nodesepB=3pt}

\pstree[treemode=U,xbbl=8pt,xbbr=14pt]{%

\Tc[fillcolor=white,fillstyle=solid]{5pt}}{%

\TR*{foo}^{left}

\TR*{bar}_{right}}}

We would have gotten the same result by changing the bounding box of the two terminal nodes.
To skip levels, use

\skiplevel * [Options] {nodes or subtrees}

\skiplevels * [Options] {int}
<nodes or subtrees>

\endskiplevels

These are kind of like subtrees, but with no root node.
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\pstree[treemode=R,levelsep=1.8,radius=2pt]{\Tc{3pt}}{%

\skiplevel{\Tfan}

\pstree{\Tc{3pt}}{%

\TC*

\skiplevels{2}

\pstree{\Tc{3pt}}{\TC* \TC*}

\TC*

\endskiplevels

\pstree{\Tc{3pt}}{\TC* \TC*}}}

The profile at the missing levels is the same as at the first non-missing level. You can adjust this with the
bounding box parameters. You get greatest control if you use nested \skiplevel commands instead of \skiplevels.
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Player 1

Player 2

Player 3

b (0,0,0)
N

L

b

(-10,10.-10)

l r

b

(3,8,-4)

c

b

(-8,3,4)

d

R

b

(10,-10.0)

l r

b

(4,8,-3)

c

b

(0,-5,0)

d

\large\psset{radius=6pt, dotsize=4pt}

\pstree[thislevelsep=0,edge=none,levelsep=2.5cm]{\Tn}{%

\pstree{\TR{Player 1}}{\pstree{\TR{Player 2}}{\TR{Player 3}}}

\psset{edge=\ncline}

\pstree{\pstree[treemode=R]{\TC}{\Tdot ~{(0,0,0)} ^{N}}}{%

\pstree{\TC[name=A] ^{L}}{%

\Tdot ~{(-10,10.-10)} ^{l}

\pstree{\TC[name=C] _{r}}{%

\Tdot ~{(3,8,-4)} ^{c}

\Tdot ~{(-8,3,4)} _{d}}}

\pstree{\TC[name=B] _{R}}{%

\Tdot ~{(10,-10.0)} ^{l}

\pstree{\TC[name=D]_{r}}{%

\Tdot ~{(4,8,-3)} ^{c}

\Tdot ~{(0,-5,0)} _{d}}}}}

\ncbox[linearc=.3,boxsize=.3,linestyle=dashed,nodesep=.4]{A}{B}

\ncarcbox[linearc=.3,boxsize=.3,linestyle=dashed,arcangle=25,nodesep=.4]{D}{C}

9 The scope of parameter changes

edge is the only parameter which, when set in a tree node’s parameter argument, affects the drawing of the node
connection (e.g., if you want to change the nodesep, your edge has to include the parameter change, or you have
to set it before the node).
As noted at the beginning of this section, parameter changes made with \pstree affect all subtrees. However,

there are variants of some of these parameters for making local changes, i.e, changes that affects only the current
level: thistreesep, thistreenodesize, thistreefit=tight/loose, and thislevelsep.
For example:

\pstree[thislevelsep=.5cm,thistreesep=2cm,

radius=2pt]{\Tc*{3pt}}{%

\pstree{\TC*}{\TC* \TC*}

\pstree{\TC*}{\TC* \TC*}}

There are some things you may want set uniformly across a level in the tree, such as the levelsep. At level
<n>, the command \pstreehook<roman(n)> (e. g., \pstreehookii) is executed, if it is defined (the root node of the
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whole tree is level 0, the successor tree objects and the node connections from the root node to these successors is
level 1, etc.). In the following example, the levelsep is changed for level 2, without having to set the thislevelsep
parameter for each of the three subtrees that make of level 2:

𝑋1

𝑋2

𝑌1

𝑌2

𝐾1

𝐾2

𝐽1

𝐽2
\[

\def\pstreehookiii{\psset{thislevelsep=3cm}}

\pstree[treemode=R,levelsep=1cm,radius=2pt]{\Tc{4pt}}{%

\pstree{\TC*}{%

\pstree{\TC*}{\Tr{X_1} \Tr{X_2}}

\pstree{\TC*}{\Tr{Y_1} \Tr{Y_2}}}

\pstree{\TC*}{%

\pstree{\TC*}{\Tr{K_1} \Tr{K_2}}

\pstree{\TC*}{\Tr{J_1} \Tr{J_2}}}}

\]

10 Draft mode

11

m

m

m

11

m

\pstree[dotstyle=oplus,dotsize=8pt,

nodesep=2pt,treemode=R]

{\Tcircle{11}}{%

\Tdot

\pstree{\Tfan}{\Tdot}

\pstree{\Tdot}{\Tfan[linestyle=dashed]}}

%

\pstree[draft,dotstyle=oplus,dotsize=8pt,

nodesep=2pt,treemode=R]

{\Tcircle{11}}{%

\Tdot

\pstree{\Tfan}{\Tdot}

\pstree{\Tdot}{\Tfan[linestyle=dashed]}}
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11 List of all optional arguments for pst-tree

The default value ist set when an optional argument is called without any value, e. g. \pstree[levelsep] is the
same as \pstree[levelsep=2cm]. All boolean arguments are preset to false.

Key Type Default
treefit ordinary tight

thistreefit ordinary tight

treemode ordinary 0

treesep ordinary 0.75cm

thistreesep ordinary [none]

treenodesize ordinary -1pt

thistreenodesize ordinary -1pt

levelsep ordinary 2cm

thislevelsep ordinary [none]

treeflip boolean true

showbbox boolean true

edge ordinary \ncline

bbl ordinary [none]

bbr ordinary [none]

bbh ordinary [none]

bbd ordinary [none]

xbbl ordinary [none]

xbbr ordinary [none]

xbbh ordinary [none]

xbbd ordinary [none]

fansize ordinary 1cm

tnsep ordinary

tnyref ordinary

tnheight ordinary \ht \strutbox

tndepth ordinary \dp \strutbox

tnpos ordinary

References

[1] Denis Girou. “Présentation de PSTricks”. inCahier GUTenberg: 16 (april 1994), pages 21–70.

[2] Michel Goosens andothers. The LATEX Graphics Companion. second. Boston, Mass.: Addison-Wesley Publishing
Company, 2007.

[3] Nikolai G. Kollock. PostScript richtig eingesetzt: vom Konzept zum praktischen Einsatz. Vaterstetten: IWT,
1989.

[4] Herbert Voß. PSTricks – Grafik für TEX und LATEX. 7 edition. Heidelberg/Hamburg: DANTE – Lehmanns,
2016.

[5] Timothy Van Zandt. multido.tex - a loop macro, that supports fixed-point addition. CTAN:/macros/generic/m
ultido.tex, 1997.

[6] Timothy Van Zandt and Denis Girou. “Inside PSTricks”. inTUGboat : 15 (september 1994), pages 239–246.

CTAN:/macros/generic/multido.tex
CTAN:/macros/generic/multido.tex


Index

�, 12

a, 13
armA, 10
.aux, 9

b, 13
bbd, 14
bbh, 14
bbl, 14
bbr, 14

D, 6
\def, 10
dvips, 3

edge, 10, 16
\endpsTree, 4
\endskiplevels, 14
Environment

psTree, 4
Extension

.aux, 9

fansize, 5

href, 13

\jobname, 9

Keyvalue
a, 13
b, 13
D, 6
L, 6
l, 13
loose, 8, 16
R, 6
r, 13
tight, 8, 16
U, 6

Keyword
armA, 10
bbd, 14
bbh, 14
bbl, 14
bbr, 14
edge, 10, 16
fansize, 5
href, 13

labelsep, 13
levelsep, 9, 16, 17
name, 10
nodesep, 16
nodesepA, 5
offsetA, 5
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tnpos, 13
tnsep, 13
tnyref, 13
tpos, 12
treefit, 8
treeflip, 7, 12
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treenodesize, 8
treesep, 8
vref, 13
xbbd, 14
xbbh, 14
xbbl, 14
xbbr, 14
yref, 13

L, 6
l, 13
labelsep, 13
levelsep, 9, 16, 17
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Macro
\def, 10
\endpsTree, 4
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\jobname, 9
\MakeShortTab, 12
\MakeShortTnput, 13
\ncdiag, 10
\ncdiagg, 10
\ncline, 10
\ncput, 11
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\nput, 12
\psedge, 10
\psovalnode, 4
\pspred, 9
\pssucc, 9
\psTree, 4
\pstree, 4, 7, 12, 16, 18
\pstreehookii, 16
\renewcommand, 10
\Rnode, 5
\rnode, 5
\rput, 3
\skiplevel*, 14
\skiplevel, 15
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\skiplevels, 15
\strutbox, 13
\taput, 11, 12
\tbput, 11, 12
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\Tc*, 5
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\Tdot*, 5
\Tf*, 5
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\tlput, 11, 12
\Tn, 5
\Toval*, 5
\Toval, 4
\Tp*, 5
\TR*, 5
\TR, 5
\Tr*, 5
\Tr, 5
\trput, 11, 12
\tspace, 8
\Ttri*, 5

\MakeShortTab, 12
\MakeShortTnput, 13

name, 10
\ncdiag, 10
\ncdiagg, 10
\ncline, 10
\ncput, 11
nodesep, 16
nodesepA, 5
none, 10
\nput, 12

offsetA, 5

Program
dvips, 3

\psedge, 10
\psovalnode, 4
\pspred, 9
\pssucc, 9
\psTree, 4
psTree, 4
\pstree, 4, 7, 12, 16, 18
\pstreehookii, 16

R, 6
r, 13
ref, 5
\renewcommand, 10
\Rnode, 5
\rnode, 5
Rokicki, 3
\rput, 3

shortput, 12
showbbox, 14
\skiplevel, 15
\skiplevel*, 14
\skiplevels, 15
\skiplevels*, 14
\strutbox, 13
subtree, 4, 8
Syntax

�, 12

tab, 12
\taput, 11, 12
\tbput, 11, 12
\TC*, 5
\Tc*, 5
\TCircle*, 5
\Tcircle*, 5
\Tdia*, 5
\Tdot*, 5
\Tf*, 5
\Tfan*, 5
thislevelsep, 16, 17
thistreefit, 16
thistreenodesize, 16
thistreesep, 16
tight, 8, 16
\tlput, 11, 12
\Tn, 5
tndepth, 13
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tnheight, 13
tnpos, 13
tnsep, 13
tnyref, 13
\Toval, 4
\Toval*, 5
\Tp*, 5
tpos, 12
\TR, 5
\Tr, 5
\TR*, 5
\Tr*, 5
tree objects, 4
treefit, 8
treeflip, 7, 12
treemode, 7
treemode=, 6
treenodesize, 8
treesep, 8
\trput, 11, 12
true, 12
\tspace, 8
\Ttri*, 5

U, 6

Value
loose, 8
none, 10
tab, 12
tight, 8
true, 12

vref, 13

xbbd, 14
xbbh, 14
xbbl, 14
xbbr, 14

yref, 13
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